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Specifications for GlobalSoilMap products
34

 

Context and objectives 

There is a need for accurate, up-to-date and spatially referenced soil information. This need has 

been expressed by the modeling community, land managers, policy developers and decision 

makers. The need coincides with an enormous leap in technologies that allow for 

improvements in more accurately collecting and predicting soil properties. 

A global consortium has been formed to make a new digital soil map of the world using state-

of-the-art and emerging technologies. This new GlobalSoilMap will include prediction of soil 

properties at fine spatial resolution (~100 m). These data will be supplemented by 

interpretation and functionality options to support improved decisions for a range of global 

issues such as food production and hunger eradication, climate change, and environmental 

degradation. This is an initiative of the Digital Soil Mapping Working Group of the International 

Union of Soil Sciences (IUSS). 

For more information see www.globalsoilmap.net 

This document sets out the Specifications for GlobalSoilMap project data products (Tiers 1 to 

4). The Specifications do not prescribe how the products must be made; only what they need to 

conform to in order to permit global collation and presentation of consistent standardized data. 

Specifications Summary 

The Specifications focus on five aspects (Table 0):  

1. The spatial entities 

2. The soil properties to be predicted (and the date associated with their prediction)  

3. The uncertainties for each soil property prediction 

4. The age of the data or information used to estimate the predicted property values 

5. The validation measures to be used and reported.  
 
 
  

                                                
3
 Agreement on the initial specifications was achieved at the GlobalSoilMap node meeting in 

Seoul, Korea on October 25-26, 2009.  
 
4
 Agreement on version (2.1) of the specifications was achieved in June, 2011. Agreement on 

version (2.2) of the specifications was achieved in February 2012. 
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Table 0 – Summary of GlobalSoilMap Tiered data products 

Tier Spatial 

entity 

Grid Properties Uncertainty Date 

stamping 

Validation 

measure 

1 ‘point’ with 

specified X, 

Y 

coordinates 

Located at 

center of 

cells of 3 

arc second 

by 3 arc 

second 

grid  

Point 

estimate for 

all 

properties in 

Tables 3, 4 & 

5 by 

standard 

depths 

Upper and lower 

90% PI for all 

properties at all 

depths 

N/A N/A 

2  

(includes 

all Tier 1 

products) 

 

100 m by 

100m block  

Centred 

on cells of 

3 arc 

second by 

3 arc 

second  

grid 

Block 

average for 

all 

properties in 

Tables 3, 4 & 

5 by 

standard 

depths 

Upper and lower 

90% PI of block 

average for all 

properties at all 

depths 

Year or 

period of 

field data 

collection 

N/A 

3 

(includes 

all Tier 2 

products) 

   Marginal 

probability 

distribution for 

each and every 

xyz-point 

 

 National/Regional 

RMSE, etc. for point 

and block predictions 

for all properties at 

all depths, by 

independent 

(probability) 

sampling 

4 [A, AA, 

AAA]
5
 

(includes 

all Tier 3 

products) 

   Complete 

spatial-

multivariate 

probability 

distribution 

(joint probability 

distribution for 

all soil 

properties and 

xyz-points) 

 Thresholds of RMSE 

and % coverage of 

true values are met 

for each prediction 

 
 
 

                                                
5 accuracy thresholds for each attribute (and each depth) will be specified in tabular form, linking 
average prediction interval width, and the percentage of independent validation samples that fall within 

the prediction intervals (for A, AA, AAA etc) 
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GlobalSoilMap will deliver estimated values (and a measure of uncertainty) for an agreed set of 

functional soil properties representing two globally defined spatial entities. 

The Tier 1 spatial entity is a point location with defined X, Y coordinates. GlobalSoilMap points 

are located at the cell centres of a global 3 arc second grid, which is defined to exactly match 

the NASA Shuttle Radar Digital Elevation Model grid (extended north and south to the poles). 

The Tiers 2 to 4 spatial entity is a volumetric grid cell (a voxel) which represents an area of 100 

m by 100 m horizontal dimensions centred at the points defined by the primary spatial entity.  

In the vertical dimension, predictions of soil property values and their associated uncertainties 

will be made to 2 m (if total profile depth is 2 m or more)) with data reported for 6 standard 

depth intervals of 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm.   

Twelve soil properties will be predicted for each spatial entity (Tables 3, 4 & 5). These are:  

(1) total profile depth (cm)  

(2) plant exploitable (effective) soil depth (cm) 

(3) organic carbon (g/kg) 

(4) pH (x10) 

(5) sand (g/kg) 

(6) silt (g/kg) 

(7) clay (g/kg) 

(8) gravel (m
3 

m-
3
) 

(9) ECEC (cmolc/kg) 

(10) bulk density of the fine earth (< 2 mm) fraction (excludes gravel) (Mg/m
3
) 

(11) bulk density of the whole soil in situ (includes gravel) (Mg/m
3
) and  

(12) available water capacity (mm).  

Additional soil properties including, for example, EC (dS/m) may be predicted at the discretion 

of the Nodes but these are not mandatory.  

Each soil property will have an estimate of the uncertainty associated with the prediction for 

each depth (for properties reported by depth) for each spatial entity. For Tier 1 and 2 

uncertainty is defined here as the 90% prediction interval (PI), which is the range in values 

within which the true value at any prediction location is expected to be found 9 times out of 10 

(90%). Methods of estimating uncertainty are not specified here but are outlined in appendices.  

Each data provider will be responsible for fully documenting the inputs and procedures used to 

generate all products they submit. This documentation will be specified as metadata attached 

to each product. A template for recording metadata about how all outputs are produced will be 

provided as an appendix to these Specifications.  
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1. Spatial entities 

1.1 Definition of entity location and dimensions  

Two spatial entities are defined (Figure 1).  

The primary spatial entity for Tier 1 products is a point location with defined X, Y coordinates. 

GlobalSoilMap points are located at the cell centres of a global 3 arc-second grid, which exactly 

matches the NASA Shuttle Radar Digital Elevation Model grid (extended north and south to the 

poles). These points represent a volume of soil to a depth of 2 m (or depth to bedrock if less 

than 2 m) for a small irregular area with horizontal dimensions of less than 2 m by 2 m.   

The secondary spatial entity for delivery in subsequent Tiers (2-4) is defined as a volume of soil 

to a depth of 2 m (or depth to bedrock if less than 2 m) for an area with regular, fixed horizontal 

dimensions of 100 m by 100 m located at the centre of the defined global 3 arc-seconds by 3 

arc-seconds grid (Note: as the global 3 arc-second cells are approximately only 93 m x 93 m at 

the equator, the GlobalSoilMap blocks will overlap by increasing amounts towards the poles).   

Figure 1: GlobalSoilMap spatial entities and the global 3 arc-second grid 
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1.2 Vertical Dimension- Depth  

Depth is measured from the soil surface. For mineral soils, the soil surface is the top of the 

mineral soil. For organic soils (or mineral soils with an O horizon), the top of any surface horizon 

identified as an O horizon is considered the soil surface. The soil surface is the top of the part of 

the O horizon that is at least slightly decomposed. Fresh leaf or needle fall that has not 

undergone observable decomposition is excluded when determining soil depth. For soils with a 

cover of 80 percent or more rock fragments on the surface, the depth is measured from the 

surface of the rock fragments (Soil Survey Division Staff, 1993: Chapter 3 page 4).  

A value will be predicted for 12 soil properties, and for the uncertainty associated with this 

prediction, for six fixed depth intervals (Table 1). The values reported for these six depth 

3 arc 
seconds 

3 arc 
seconds 

100 
metres 

100 
metres 

Primary spatial  

entity 
Secondary 

entity 

Global 3 arc second 

grid cells (origin 0,0) 
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intervals act as coefficients for a spline function that will provide a mechanism for reporting 

continuous variation with depth for all properties at all grid cells. 

In addition, a value, and associated uncertainty, will be predicted for each of depth to bedrock 

or consolidated material and for plant extractable (effective) soil depth (depth to restricting 

layer).  

Table 1. Depth intervals for which soil property values and uncertainty will be provided 

No. Depth Interval Lower 5 Percentile of 

mean 

Estimated Value of 

Soil Property 

Upper and lower 95 

Percentile of mean 

1 0 - 5 cm    

2 5 - 15 cm    

3 15 - 30 cm    

4 30 - 60 cm    

5 60 - 100 cm    

6 100 - 200 cm    

7 Total profile Depth  Depth to rock in cm  

8 Plant exploitable 

Depth 

 Effective Depth in cm  

Total profile depth is depth to a lithic or paralithic contact in cm as defined below. Total profile 

depth refers to the depth to fixed rock. Hard and soft bedrock are distinguished. Hard bedrock 

is usually indurated but may be strongly cemented, and excavation difficulty would be very high 

or higher. Soft bedrock meets the consistence requirements for paralithic contact (Soil Survey 

Division Staff, 1993, Chapter 6 page 13). 

Plant Exploitable (Effective) Depth is defined as: “The lower limit of biologic activity, which 

generally coincides with the common rooting depth of native perennial plants" (Soil Survey 

Staff, 1975; Soil Survey Division Staff, 1993, Chapter 1 page 5). Plant exploitable depth is the 

depth to a physical /chemical barrier at less than 2 m depth, or if a barrier is not present to the 

depth of inferred bioactivity or perennial plants. 

We can define plant exploitable soil depth by either the evidence of the roots themselves, or 

on the presence of barriers to root extension. The first option requires rules for root abundance 

to define the lower limit, or inferences on the depth of native roots from soil morphology. 

Depths may differ between biomes as given in Table 2. Although logical, the approach is 

complex. GlobalSoilMap soil specifications need to be capable of consistent application across 

the globe, and not reliant on complex accessory data. The second option defines the depth of a 

relatively-easy-rooting zone from the soil surface to a root boundary. The boundary is defined 

by one or more morphological barriers. In addition to hard and soft bedrocks cited previously, 

these barriers include: clean sand, pan, high-density material (bulk density >1.85), extremely 

gravelly or densely packed gravel, permanent water table and chemical toxicity.  

The extremely deep rooting ability of some tree species in arid land, where roots penetrate to 

great depth in jointed rock is noted and would not be recognised in option two. The choice of 

option needs to consider the application of the data. If it is to map ecosystem behaviour across 

different biomes then option one is favoured. If it is to explore opportunities for regional or 

global food production then the agronomic depth provided on option 2 is favoured. The second 
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option is proposed for these specifications because it is more likely to provide a consistent 

global soil information product and is likely to be more widely used. Where option one is 

required it is suggested that it be mapped as an additional layer by Nodes. 

Table 2. Summary of maximum rooting depth by biome (after Canadell et al., 1996) 

Biome N Mean maximum 

rooting depth (m) 

Highest value for 

rooting depth (m) 

Boreal Forest 6 2.0 ± 0.3 3.3 

Cropland 17 2.1 ±  0.2 3.7 

Desert 22 9.5 ±  2.4 53 

Sclerophyllous shrubland and forest 57 5.2 ± 0.8 40 

Temperate coniferous forest 17 3.9 ±  0.4 7.5 

Temperate deciduous forest 19 2.9 ±  0.2 4.4 

Temperate grassland 82 2.6 ±  0.2 6.3 

Tropical deciduous forest 5 3.7± 0.5 4.7 

Tropical evergreen forest 5 7.3 ± 2.8 18 

Tropical savanna 15 15.0 ±  5.4 68 

Tundra 8 0.5 ±  0.1 0.9 

1.3 Excluded Non-soil Areas 

Predictions of soil properties will not be made for spatial entities that are considered to be 

occupied wholly or dominantly (> 50%) by non-soil materials, including permanent water and 

ice, bare rock and permanently sealed surfaces (urban areas and pavements). No attempt will 

be made to specify the types or proportions of non-soil materials in a grid cell. Excluded grid 

cells values of soil properties should be identified as no data (i.e. -9999). 
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2. Soil Properties 

2.1 Depth of Soil 

In order to estimate soil properties at specific depth intervals, there is first a need to provide an 

estimate of the total depth of the soil within each grid cell. The project will estimate the 

following important depths for each grid cell. 

Table 3. Specifications for properties related to reporting depth of soil 

No. Property Units Precision
6
 Reference Description of Method 

1 Depth to 

Rock 

cm N3.0 Soil Survey 

Division Staff, 

1993 Chapter 

1 page 5 

Depth in cm to a lithic or paralithic contact as 

defined in USDA Soil Survey Manual. If depth is < 

200 cm record actual depth in cm. If depth is > 200 

cm record actual depth if known. If not known 

exactly, record depth as 999 cm 

2 Plant 

Exploitable 

(Effective) 

Depth 

cm N3.0 Soil Survey 

Division Staff, 

1993 Chapter 

3 page 60 

Effective depth in cm as defined in the USDA Soil 

Survey Manual. The lower limit of soil is normally 

the lower limit of biologic activity, which generally 

coincides with the common rooting depth of native 

perennial plants. This depth is where root 

penetration is strongly inhibited because of physical 

(including soil moisture or temperature) and/or 

chemical characteristics.  

2.2 Primary Soil Properties – see Appendix A 

GlobalSoilMap will produce estimates of soil property values, their uncertainty and their date of 

prediction at each of six specified depth increments for the following soil properties.  

Definitions and methods of analysis for most of the soil properties are according to ISO 

standards as defined in FAO (2006) Annex 1: Methods for Soil Analysis (see Appendix D). 

Particle size distribution is defined according to the USDA Soil Survey Laboratory Methods 

Manual (Burt, 2004). The USDA definition of particle size classes has been recommended by 

FAO for use in the Soil Map of the World. Units for properties are reported in g/Kg or cm 

(instead of % or m) to reduce data storage and transmission costs by storing integer numbers. 

  

                                                
6 The notation used to describe precision (e.g. N3.0) is interpreted as N = number, 3 = length of 

number, 0 = number of decimal digits.  Wherever possible values are reported in integer format 

to avoid the extra overhead associated with storing and transmitting real numbers.   
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Table 4. Specifications for primary soil properties  

No. Property Unit Precision
4
 Reference Description of Method 

3 Organic 

Carbon 

g/kg N4.0 ISO 10694 mass fraction of carbon by weight in the < 2 mm soil 

material as determined by dry combustion at 900° C 

4 pHx10  N3.0 ISO 10390 1:5 soil/water (divide by 10 to get correct pH) 

5 Clay g/kg N3.0 Burt, 2004 

Page 347 

< 2 µm mass fraction of the < 2 mm soil material 

determined using the pipette method 

6 Silt g/kg N3.0 Burt, 2004 

Page 347 

2-50 µm mass fraction of the < 2 mm soil material 

determined using the pipette method 

7 Sand g/kg N3.0 Burt, 2004 

Page 347 

50 µm - 2 mm mass fraction of the < 2 mm soil 

material determined using the pipette method 

8 Coarse 

Fragments 

m
3
 m

-3
 N3.0 Burt, 2004 

page 36 

mass fraction of the soil material > 2 mm 

9 ECEC mmolc/kg N4.0 ISO 11260 Cations extracted using Barium Chloride (BaCl2) plus 

exchangeable H + Al 

2.3 Derived Soil Properties 

Where no sufficient measured data exist, properties will be predicted using pedotransfer 

functions. For instance, the following properties may be predicted using pedo-transfer 

functions that will be developed and specified by the data provider:  

Table 5. Specifications for derived soil properties 

No. Property Units  Precision4 Reference Description of Method 

10 Bulk 

Density 

Mg/m
3
 N3.1 ISO 11272 Bulk Density of the whole soil (including coarse 

fragments) in mass per unit volume by a 

method equivalent to the core method using a 

pedotransfer function 

11 Bulk 

Density 

Mg/m
3
 N3.1 ISO 11272 Bulk Density of the fine earth fraction of the 

soil (< 2 mm) in mass per unit volume by a 

method equivalent to the core method using a 

pedotransfer function 

12 Available 

Water 

Capacity 

mm 

(total 

over the 

depth 

range) 

N4.0  Burt, 2004 

Page 137  

Available water capacity computed for each of 

the specified depth increments using a 

specified pedotransfer function that references 

the values estimated above for organic carbon, 

sand, silt, clay and bulk density.  

 

NOTE: AWC = f (total carbon, sand, silt, clay, % coarse fragments, bulk density) for the 6 depths. 

Profile-AWC is AWC summed over the effective depth.  
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2.4 Additional Soil Properties – see also Appendix C 

The soil properties identified above represent the minimum data set agreed upon by the 

GlobalSoilMap consortium. This list in no way restricts individual countries or nodes from 

producing a longer list of predicted soil properties for their area of interest. For example, the 

following secondary variable (Table 6) is considered by some nodes to be important, desirable 

and feasible to predict. These nodes have indicated an intention to predict this additional soil 

property but it is considered optional, from the point of view of these specifications. 

Table 6. Specifications for an additional soil property 

No. Property Units  Precision4 Reference Description of Method 

13 Electrical 

Conductivity 

mS/m N4.1   Electrical conductivity in 1:1 saturated paste 

2.5 Time (Year) 

The date of the actual or estimated time of sampling of the legacy soil data will be attached to 

each of the estimated soil properties at each grid cell. The date reported will reflect the year of 

publication for a map or the year of analysis for a sampled soil profile. 

The maps of soil properties created in the GlobalSoilMap project will initially be based on 

making maximum use of legacy soils data collected and reported over many decades of field 

work. Data for any point or any map reflect the state of the soil at the time the point was 

sampled and analysed, or the map was produced. A gridded date map will be made to indicate 

the date (in years) that the soil property value most closely reflects.
7
  

 

 

                                                
7 It may be possible, in future Tiers (beyond Tier 2) of the GlobalSoilMap products to attempt to 

reconcile differences in soil property values reported for different times and under different 

land uses to one or more standardized reference dates (e.g. harmonized decadal values at 

1970, 1980, 1990, 2000, 2010, etc.) and under the land use conditions current at each date. This 

will first require that regional legacy soil data sets be analyzed to detect and quantify directions 

and rates of change in soil property values under known land use and land management 

regimes. These regional values for rates of change under different land uses could be applied to 

the original predictions of soil property values, in combination with information on land use 

history at each grid cell, to harmonize soil property values to common reference years for each 

major regional land use type. This is a potential future product and is not part of the current 

specifications. 
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3. Uncertainty, Date & Accuracy 

An important aspect of the GlobalSoilMap project is its estimate and reporting of the 

uncertainty associated with all soil property predictions.  

3.1 Uncertainty Definition  

For the purposes of these specifications, uncertainty is defined for each location and depth 

increment at increasing levels of sophistication as in Table 0. For Tier 1, it is the 90% Prediction 

Interval (PI) which reports the range of values within which the true value is expected to occur 

9 times out of 10 (or 90% of the time). Preferably the PI limits are symmetric, meaning that 

there is a 5% probability of exceeding the upper limit and a 5% probability of being below the 

lower limit. If asymmetric intervals are used, then these probabilities must be specified.  

3.2 Date Stamping  

It would be valuable to provide a raster surface to indicate the age of observational data used 

in the spatial predictions. The practical reason is to show how old or out of date the data are or 

can be. This is of clear interest to users, and can prioritise future investments in sampling. 

With each prediction location the (integer) year of the data related to the prediction can be 

given. The method of producing this is not specified but will be described as metadata. 

Methods might include the year of the nearest data point (or weighted average year of the 

nearest 8 data points for point-based predictions).  

3.3 Validation of GlobalSoilMap predictions of soil property values 

For Tier 1 and 2 products for any contiguous region no validation is required (Table 0). For Tier 

1 as an addendum, but not a requirement, an appropriate measure for each property at each 

depth increment may be the mean error and root mean square error of the point predictions. 

This can be achieved by cross-validation. It is suggested, on average, one observation point per 

10 000 square kilometres may be required and at least 50 points are required to obtain an 

estimate deemed sufficiently reliable.  

In subsequent tiers beyond Tier 2 it is anticipated a richer set of validation criteria will be used, 

including the percentage of the map area that falls within the realised uncertainty limits (Tier 

3), and ultimately should meet pre-specified accuracy measures (Tier 4).  

It is essential that validation data are truly independent from the calibration data predictions 

and hence have not been used in any way to help make the prediction maps. Furthermore, it is 

encouraged that validation data are collected using probability sampling, because this allows to 

calculate confidence limits associated with the validation measures and to test whether a more 

elaborate or novel method produces more accurate results than an existing approach. 

3.4 Reproducibility of GlobalSoilMap predictions of soil property values 

The GlobalSoilMap project aims for reproducible research, meaning that it is possible to 

replicate or reproduce all output products given access to the inputs used to produce them. In 
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the first instance, for Tier 1 products, reproducibility will be enabled by requiring that for each 

output value reported for any soil property, associated date and associated uncertainty there 

will be full documentation of the methods used to produce those values. Documentation of 

methods used to produce each output will be reported using the standard template described 

in Appendix A, Table 7.  

Future versions of the specifications will be expanded to require contributors to guarantee 

complete reproducibility by specifying all inputs, processes and outputs and by making all 

inputs and processes available for access and use by others. 

3.5 Policy for release of interim GlobalSoilMap predictions of soil property values 

It is desirable to upload and release for general use only productsthat fully meet all 

specifications by providing predictions of both predictions and associated uncertainties for all 

soil properties at all depths. However, preliminary or incomplete GlobalSoilMap products may 

be released or made available under the following circumstances. 

• Where the data are made available for testing delivery processes or client use (i.e. not a 

full / official release). 

• Where an agreed minimum area (i.e. the node and GlobalSoilMap agree on the size and 

utility of the area covered) has at least some properties available to full specification for 

those properties including estimates of uncertainty. 
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Appendix A: Minimum data set for each 100 m grid cell  

Table 7 below illustrates the information that must be provided for each grid cell and suggests a 

possible structure for providing that information in a data base format. This structure is not 

part of the current GlobalSoilMap specifications. A formal process is underway to develop a 

UML model for describing the delivery products of the GlobalSoilMap project. This UML model 

will be implemented in XML once it is defined, in order to facilitate data exchange and inter-

operability. It is assumed that all nodes will submit data that has been harmonized to the 

methods of analysis specified for each of the soil properties in these specifications (e.g. pH, 

organic carbon, sand, silt, clay, gravel, etc.) 

Table 7. Illustration of the minimum data required for each grid cell 

 
 

 

 

Long (X) Lat (Y) Tile_ID 1 Deg Cell ID AttributeAnalyzed yearOfAnalysis Top_Depth Bottom_Depth

For Example

pH

organic carbon

sand

silt

clay

gravel

BD

AWC

EC

ECEC

Profile depth

Effective Depth

Spline Smoothing Value

AttributeValue LowerUncertainty (5%) Upper Uncertainty (95%) Prediction Model Pedo transfer Function
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Appendix B: Some possible approaches for computing 

weighted mean value by grid cell. 

This Appendix presents and discusses some alternative approaches for computing or assigning a 

bulked mean value to each grid cell for each soil property of interest. It is necessary to be more 

specific about how to calculate a bulked mean value for each soil property at each of the 6 

depths within each square grid cell. 

Below are some ideas or options to consider. 

1. If using map based estimates, the bulked mean value for the soil property at a given 

depth for all soils listed for the polygon can be assumed to represent an areal average 

already and so should satisfy the requirement that the value for the cell represent a 

bulked area average.  

2. Work at a grid resolution that is finer than the final reporting resolution (25, 30 or 50 m 

grid cells) and produce estimates of the soil property value at each depth for each of the 

finer resolution grid cells. Then compute an average value for the 100 m x 100 m grid 

cell as the mean of all values for the finer resolution cells. 

3. Produce point-centred estimates for the centre of each grid cell at the working 

resolution (100 m or 90 m) and then compute a bulked mean value for each grid cell as 

the average value within a 3x3 or 5x5 window centred on each grid cell. This way the 

bulked area average reflects the average value within a larger window centred at each 

grid cell.  

4. Don’t worry about it and just assume that any point centred prediction represents the 

bulked mean value for the entire grid cell. 

Reporting a bulked mean value has the advantage of removing the short range variability in the 

value of a soil property within the extent of a grid cell. The uncertainty associated with 

estimation of a mean value for each reference depth within the full extent of a grid cell will also 

be lower than the uncertainty associated with estimation of a single value for each depth at a 

single point at the centre of a grid cell. The values reported for each grid cell should therefore 

be an estimate of the mean value of that property at each of the six specified depths within the 

extent of the cell occupied by soil materials (excluding non-soils).   

It is necessary to be aware of, and to clearly acknowledge, that in some instances of strongly 

contrasting soils the reported bulked average value may not exist at any single physical location 

within the grid cell.  Consider the case of a cell that is 50% organic peat soils and 50% sandy 

upland soils with no or very low organic matter content. The bulked mean value for organic 

carbon for the cell would represent a mean value between the high value for the peat soil and 

the low value for the sandy soil. This value is not likely to occur anywhere within the grid cell 

but it is representative of the mean value within the grid cell. It will be necessary to live with 

this dichotomy and acknowledge it.  
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Appendix C: Correlations of soil properties derived from 

different soil analytical methods  

This Appendix identifies and discusses the need for pedotransfer functions to convert soil 

property values from their original method of analysis to the standard GlobalSoilMap reference 

method of analysis. For discussion purposes, examples are provided to illustrate conversion of 

data from several widely used non-reference methods into the specified reference methods.  

C1.0. Rationale 

A well-known issue with using legacy soils data is the inconsistency that arises from use of many 

different methods for analysing soils in the laboratory or describing them in the field. These 

different methods yield different values that are not exactly equivalent or comparable. This 

creates a need to harmonize values produced using different methods in order to make them 

roughly equivalent and comparable.  Harmonization can be challenging.  

In order to make use of legacy soils data in the GobalSoilMap project, it will be necessary to 

convert measurements made using different laboratory methods into an equivalent value in the 

specified standard reference method. For example, values reported for organic carbon 

determined by non-reference methods will need to be converted into equivalent values in the 

reference method of dry combustion. Similarly, values for pH in 1:1 or 1:2 water will need to be 

converted the equivalent value in the standard reference method of pH in 1:5 water. 

Harmonization of values reported for sand, silt and clay computed using methods of textural 

analysis that use definitions for particle size fractions different from the reference method will 

also have to be converted to the standard particle size definitions adopted for these 

specifications.  

Default pedotransfer functions could potentially be identified for each of the methods of 

analysis for each of the soil properties selected for inclusion in the project. However, locally 

specific pedotransfer functions have consistently proven to be more effective than global ones 

and there is widespread agreement that there is generally no universal equation for converting 

from one method to another in all instances (Konen et al., 2002; Meersmans et al., 2009; 

Jankauskas et al., 2006; Jolivet et al., 1998; de Vos et al., 2007).   

Consequently, there will be a need to develop locally relevant pedotransfer functions at the 

node level that apply to restricted soil-landscape domains. Examples of conversion of values 

from non-reference to reference methods are presented below for the primary soil properties 

of organic carbon, pH, sand, silt and clay.  
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C1.1. Organic Carbon  

The standard reference method for reporting soil organic carbon for the GlobalSoilMap project 

is by dry combustion to at least 900°C (ISO 10694). Values of organic carbon will be reported in 

g/Kg with integer precision (N4.0) Because of its accuracy and completeness, the dry 

combustion method (Leco at 1000°C) has been used in many studies as a reference method 

against which to calibrate other methods (Grewal et al., 1991;. Meersmans et al., 2009) 

The dry combustion method is based on thermal oxidation of the OC and thermal 

decomposition of IC minerals by means of a furnace. It is a rapid, reliable method for the 

determination of the OC when IC is removed prior to combustion. In fact, dry combustion is 

considered to ensure oxidation of all OC so it is considered the most accurate method. It can be 

used as a reference to calibrate other methods against it (Biscutti et al., 2004). 

In the dry combustion method, the carbon present in the soil is oxidised to carbon dioxide (CO2) 

by heating the soil to at least 900°C in a flow of oxygen-containing gas that is free from carbon 

dioxide. The amount of carbon dioxide released is then measured by titrimetry, gravimetry, 

conductometry, gas chromatography or using an infrared detection method, depending on the 

apparatus used. When the soil is heated to a temperature of at least 900 °C, in addition to 

organic carbon any inorganic carbon present as carbonate is also completely decomposed.  

Total organic carbon can be determined directly or indirectly. Direct determination consists of 

previous removal of any carbonates present by treating the soil with hydrochloric acid. Indirect 

determination consists of a correction of the total carbon content for the carbonates present.   

Examples of studies that have used dry combustion for calibrating other methods of analyzing 

organic carbon include Bisutti et al., 2004; Byre and Slaton, 2003; de Vos et al., 2007; Grewal et 

al., 1991; Kalembasa and Jenkinson, 1973; Jankauskas et al., 2006; Jolivet et al., 1998; Konen et 

al., 2002; Meersmans et al., 2009; Mikhailova et al., 2003; Sleutel et al., 2007; Soon and 

Abboud, 1991 and Wang et al, 1996.  

A review of several studies (Table 9) illustrates that it is possible to produce regression 

equations to permit conversion of results produced by one method into equivalent values in a 

specified reference method (usually dry combustion). However, the studies also highlight the 

fact that local calibration equations that reflect differences in soils on a regional basis are 

usually needed.  

It has not proven possible to provide a single universal equation to convert organic carbon 

values produced using other methods of analysis to equivalent values in the reference method 

of dry combustion. Each node will need to develop and apply node-specific conversions. 
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Table 8. Regression equations for harmonizing values of organic carbon to a reference standard 
No. Target Method Y = Source Method X * Slope + Intercept R2 Reference 

1 Dry Combustion Spectro-photonic 0.9800 0.0000 0.98 Soon and Abboud (1991) 

2 Dry Combustion Walkley-Black 1.0500 0.0000 0.98 Soon and Abboud (1991) 

3 Dry Combustion modified Tinsley 1.0400 0.0000 0.98 Soon and Abboud (1991) 

4 Dry Combustion modified Mebius 1.4000 0.0000 0.99 Soon and Abboud (1991) 

5 Dry Combustion Loss on Ignition (LOI) 0.6330 -9.3600 0.98 Soon and Abboud (1991) 

6 Tinsley (1950) LOI at 850 C 0.4620 -1.3600 0.99 Ball, 1964 

7 Tinsley (1950) LOI at 850 C 0.4600 -1.8700 0.99 Ball, 1964 

8 Tinsley (1950) LOI at 375 C 0.4580 -0.4000 0.99 Ball, 1964 

9 DC (Leico at 875 C) LOI at 360 C MLRA 65NE 1.1414 -0.6791 0.94 Konen et al., 2002 

10 DC (Leico at 875 C) LOI at 360 C MLRA 75NE 0.0672 -4.5359 0.94 Konen et al., 2002 

11 DC (Leico at 875 C) LOI at 360 C MLRA 95B 0.5743 0.1025 0.98 Konen et al., 2002 

12 DC (Leico at 875 C) LOI at 360 C MLRA 103 IA 0.6824 -2.8696 0.97 Konen et al., 2002 

13 DC (Leico at 875 C) LOI at 360 C MLRA 108 IL 0.6094 0.1949 0.98 Konen et al., 2002 

14 DC (Dumas at 1000) Walkley-Black 1.2500 0.1260 0.99 Grewal et al., 1991 

15 LOI at 550 DC (Dumas at 1000) 1.6700 2.5100 0.76 Grewal et al., 1991 

16 LOI at 550 LOI at 450 0.9970 0.5000 0.98 Grewal et al., 1991 

18 DC (at 680 C) Wet combustion 0.9920 0.0000  Kalembasa & Jenkinson, 1973 

19 DC (at 680 C) Tinsley I 0.9500 0.0000  Kalembasa & Jenkinson, 1973 

20 DC (at 680 C) Tinsley II 0.9530 0.0000  Kalembasa & Jenkinson, 1973 

21 DC (at 680 C) Tinsley III 0.9680 0.0000  Kalembasa & Jenkinson, 1973 

22 DC (at 680 C) Anne 0.9330 0.0000  Kalembasa & Jenkinson, 1973 

23 DC (at 680 C) Mebius 0.9530 0.4300  Kalembasa & Jenkinson, 1973 

24 DC (at 680 C) Walkley-Black 0.7690 -0.0800  Kalembasa & Jenkinson, 1973 

25 DC (at 680 C) Tyurin 0.9330 0.0000  Kalembasa & Jenkinson, 1973 

26 DC (Leico CNS 2000) Walkley-Black 1.3350 0.5730 0.88 Mikhailova et al., 2003 

27 DC Robo-prep Walkley-Black 1.4490 0.4110 0.90 Mikhailova et al., 2003 

28 DC (Leico at 1000 C) Walkley-Black (classic) 1.4700 0.0000 0.84 Meersmans et al., 2009 

29 DC (Leico at 1000 C) Walkley-Black (modified) 1.2000 0.0000 0.87 Meersmans et al., 2009 

30 Walkley-Black (mod) Walkley-Black (classic) 0.8200 0.6800 0.53 Brye and Slaton, 2003 

31 DC (Leico at 1000 C) DC (Carlo–Erba at 1020 C) 1.1300 -0.0600 0.99 Brye and Slaton, 2003 

32 Walkley-Black (modified) DC (Leico at 1000 C) 0.7200 0.6300 0.73 Brye and Slaton, 2003 

33 Walkley-Black (modified) DC (Carlo–Erba at 1020 C) 0.8100 0.5800 0.73 Brye and Slaton, 2003 

34 Walkley-Black (classic) DC (Leico at 1000 C) 0.8900 -0.0900 0.99 Brye and Slaton, 2003 

35 Walkley-Black (classic) DC (Carlo–Erba at 1020 C) 1.0200 0.1500 0.99 Brye and Slaton, 2003 

36 Walkley-Black (classic) LOI at 360 0.4300 -0.0900 0.88 Brye and Slaton, 2003 

37 Walkley-Black (modified) LOI at 360 0.3400 0.6300 0.44 Brye and Slaton, 2003 

38 DC (Carlo–Erba at 1020 C) LOI at 360 0.4300 0.6500 0.98 Brye and Slaton, 2003 

39 DC (Leico at 1000 C) LOI at 360 0.4800 -0.0030 0.89 Brye and Slaton, 2003 
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Table 9. Regression equations for harmonizing values of organic carbon to a reference standard 
No. Target Method Y = Source Method X * Slope + Intercept R2 Reference 

40 A-I colorimetric Walkley-Black (classic) 0.5410 -0.0330 0.96 Chacón et al., 2002 

41 A-I colorimetric Walkley-Black (classic) 0.4590 -0.0580 0.94 Chacón et al., 2002 

42 A-I colorimetric Walkley-Black (classic) 0.4920 0.0000 0.99 Chacón et al., 2002 

43 DC (Shimadzu at 900 C) Walkley-Black not corrected 1.5800 0.0000 0.96 De Vos et al., 2007 

44 DC (Shimadzu at 900 C) Walkley-Black corrected 1.2000 0.0000 0.96 De Vos et al., 2007 

45 LOI at 375 (Lab K) DC (Vario EL at 1150 C) 1.2530 0.5030 0.87 Jankauskas et al., 2006 

46 LOI at 375 (Lab W) DC (Vario EL at 1150 C) 1.2790 0.2380 0.89 Jankauskas et al., 2006 

47 Walkley-Black NRCS 1995 DC (Vario EL at 1150 C) 1.0200 0.1680 0.97 Jankauskas et al., 2006 

48 Tyurin photometric DC (Vario EL at 1150 C) 0.8700 0.3690 0.98 Jankauskas et al., 2006 

49 Tyurin titrametric classic DC (Vario EL at 1150 C) 0.8690 0.1620 0.91 Jankauskas et al., 2006 

50 LOI at 375 (Lab W) LOI at 375 (Lab K) 0.8750 0.1500 0.88 Jankauskas et al., 2006 

51 Walkley-Black NRCS 1995 LOI at 375 (Lab K) 0.6100 0.3570 0.83 Jankauskas et al., 2006 

52 Tyurin photometric LOI at 375 (Lab K) 0.5220 0.5250 0.84 Jankauskas et al., 2006 

53 Tyurin titrametric classic LOI at 375 (Lab K) 0.5280 0.1390 0.87 Jankauskas et al., 2006 

54 Walkley-Black NRCS 1995 LOI at 375 (Lab W) 0.6350 0.4200 0.86 Jankauskas et al., 2006 

55 Tyurin photometric LOI at 375 (Lab W) 0.5510 0.5570 0.89 Jankauskas et al., 2006 

56 Tyurin titrametric classic LOI at 375 (Lab W) 0.5670 0.3060 0.85 Jankauskas et al., 2006 

57 Tyurin photometric Walkley-Black NRCS 1995 0.8130 0.3110 0.97 Jankauskas et al., 2006 

58 Tyurin titrametric classic Walkley-Black NRCS 1995 0.8240 0.0810 0.91 Jankauskas et al., 2006 

59 Tyurin titrametric classic Tyurin photometric 0.9540 -0.1120 0.89 Jankauskas et al., 2006 

60 Walkley-Black NRCS 1995 DC (Leico at 875 C) 0.9180 1.0000 0.99 Jolivet et al., 1998 

61 Walkley-Black NRCS 1995 DC (Leico at 875 C) 0.9470 0.0000 0.99 Jolivet et al., 1998 

62 DC (Leico at 875 C) LOI at 550 C 0.6130 0.6000 0.99 Jolivet et al., 1998 

63 DC (Leico at 875 C) LOI at 550 C 0.6240 0.0000 0.99 Jolivet et al., 1998 

64 DC (Shimadzu at 900 C) Walkley-Black NRCS 1995 1.5060 0.0000 0.99 Lettens et al., 2007 

65 DC (Shimadzu at 900 C) Walkley-Black NRCS 1995 1.5940 0.0000 0.99 Lettens et al., 2007 

66 DC (Shimadzu at 900 C) Walkley-Black NRCS 1995 1.7740 0.0000 0.98 Lettens et al., 2007 

67 Walkley-Black 6A1 DC (Leico at 1000 C) 0.9700 0.0000 0.99 Wang et al., 1996 

68 DC (Leico at 1000 C) LOI at 375 C siltstone 0.7320 -1.6100 0.95 Wang et al., 1996 

69 DC (Leico at 1000 C) LOI at 375 C sandstone 0.5620 -0.9950 0.95 Wang et al., 1996 

70 DC (Leico at 1000 C) LOI at 375 C basalt 0.4690 -0.9410 0.95 Wang et al., 1996 

71 DC (Leico at 1000 C) LOI at 375 C combined 0.7260 -1.5980 0.96 Wang et al., 1996 

72 DC (Leico at 1000 C) LOI at 375 C basalt 0.4690 -0.9410 0.95 Wang et al., 1996 

73 Walkley-Black 6A1 DC (Leico at 1000 C) other 0.7390 -1.7590 0.95 Wang et al., 1996 

74 Walkley-Black 6A1 DC (Leico at 1000 C) basalt 0.4520 -0.8910 0.95 Wang et al., 1996 

75 LOI at 375 C basalt DC (Leico at 1000 C) 0.4692 -0.9410 0.95 Wang et al., 1996 

76 Walkley-Black 6A1 LOI at 375 C combined 0.4880 -2.3360 0.91 Wang et al., 1996 

77 Walkley-Black 1934 DC (Variomax CNS) 1.0340 0.0160 0.99 Sleutel et al., 2007 

78 Walkley-Black 1934 DC (Variomax CNS) 1.0130 0.0000 0.99 Sleutel et al., 2007 

79 Springer-Klee, 1954 DC (Variomax CNS) 1.0020 0.0000 0.98 Sleutel et al., 2007 

80 DC (Shimadzu at 900 C) DC (Variomax CNS) 0.9430 0.0000 0.99 Sleutel et al., 2007 
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C1.2. pH  

As a single measurement, pH describes more than relative acidity or alkalinity. It also provides 

information on nutrient availability, metal dissolution chemistry, and the activity of 

microorganisms (Miller and Kissel, 2010).  

The standard reference method for reporting pH for the GlobalSoilMap project is ISO 

10390:2005. 

This standard specifies an instrumental method for the routine determination of pH using a 

glass electrode in a 1:5 (volume fraction) suspension of soil in water (pH in H2O), in 1 mol/l 

potassium chloride solution (pH in KCl) or in 0.01 mol L
-1

 calcium chloride solution (pH in CaCl2).   

Values for pH for the GlobalSoilMap project will be reported for a 1:5 suspension of soil in 

water. Values will be reported in byte format as pH x 10 with a precision of (N3.0) (value range 

of 0-149). These values will need to be divided by 10 to produce a correct pH value with a 

precision of 1 decimal place.  

ISO 10390:2005 is applicable to all types of air-dried soil samples, for example pre-treated in 

accordance with ISO 11464. The most common method for analyzing pH in North America is a 

1:1 soil/water suspension (Miller and Kissel, 2010). Adopting ISO 10390:2005 as a standard with 

its specification of pH measured in a 1:5 suspension of soil in water will require many values to 

be converted from 1:1 soil/water to 1:5 soil/ water equivalent values.  

The ratio of soil to water in a suspension has a net effect of increasing the pH with a decrease in 

the soil/water ratio. Keaton (1938) and Davis (1943) have shown that decreasing the soil/water 

ratio from 10:1 to 1:10 resulted in an increase of 0.40 pH units. Values for pH computed using 

methods with a lower ratio of soil to water (e.g. 1:1 or 1:2.5) will generally be lower than 

equivalent values for pH in 1:5 CaCl2 solution and will need to be adjusted higher. Several 

authors have demonstrated that fitting quadratic or curvilinear functions to soil pH data 

produces regression equations with higher coefficients of determination that those obtained 

from a linear fit (Aitken and Moody, 1991; Miller and Kissel, 2010).  

Soil pH varies with season and soil moisture content with higher pH values associated with 

wetter soils and winter conditions and lower pH values with drier soils and summer conditions 

(Miller and Kissel, 2010). The effects of both temporal variation in pH and variation due to 

different methods means that small differences in pH may not be meaningful in the context of 

predictions made for the GlobalSoilMap project using legacy soils data.  
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Table 10. Regression equations for converting values of pH between different methods 

 
 

No. Target Method (Y) Source Method (X) Equation R2 Reference

1 pH (1:1 0.01 m CaCl2) pH (1:1 water) y = 1.08(x) - 0.973 0.98 Miller and Kissel (2010)

2 pH (1:1 0.01 m CaCl2) pH (saturated paste) y = 1.10 (x) - 0.923 0.98 Miller and Kissel (2010)

3 pH (1:1 0.01 m CaCl2) pH (1:2 water) y = 1.05 (x) - 0.950 0.97 Miller and Kissel (2010)

4 pH (1:1 water) pH (1:1 0.01 m CaCl2) y = x + 0.267 (EC 1:1 water)
-0.445

0.99 Miller and Kissel (2010)

5 pH (1:2 water) pH (1:1 0.01 m CaCl2) y = x + 0.239 (EC 1:1 water)
-0.505

0.98 Miller and Kissel (2010)

6 pH (1:5 0.01 m CaCl2) pH (1:5 water) y = 1.012 (x) - 0.76 0.99 Conyers and Davey (1988)

7 pH (1:5 0.01 m CaCl2) pH (1:5 water) y = 0.979 (x) - 0.71 0.68 Bruce et al., (1989)

8 pH (1:5 0.01 m CaCl2) pH (1:5 water) y = 0.887 (x) - 0.199 0.88 Aitken and Moody (1991)

9 pH (1:5 0.01 m CaCl2) pH (1:5 water) y = 0.197 (x)
2
 - 1.21 (x) + 5.78 0.92 Aitken and Moody (1991)

10 pH (1:5 0.002 m CaCl2) pH (1:5 water) y = 0.948 (x) - 0.308 0.90 Aitken and Moody (1991)

11 pH (1:5 0.002 m CaCl2) pH (1:5 water) y = 0.178 (x)
2
 - 1.043 (x) + 5.10 0.94 Aitken and Moody (1991)

12 pH (1:5 1 m KCl) pH (1:5 water) y = 0.803 (x) + 0.077 0.81 Aitken and Moody (1991)

13 pH (1:5 1 m KCl) pH (1:5 water) y = 0.233 (x)
2
 - 1.797 (x) + 7.143 0.98 Aitken and Moody (1991)

14 pH (soil solution) pH (1:5 water) y = 1.28 (x) - 0.613 0.78 Aitken and Moody (1991)

15 pH (soil solution) pH (1:5 0.01 m CaCl2) y = 1.105 (x) - 0.140 0.79 Aitken and Moody (1991)

16 pH (soil solution) pH (1:5 0.002 m CaCl2) y = 1.050 (x) - 0.112 0.80 Aitken and Moody (1991)

18 pH (soil solution) pH (1:5 1 m KCl) y = 1.175 (x) - 0.262 0.80 Aitken and Moody (1991)
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C1.3. Particle Size Distribution (sand, silt and clay)  

Soil texture represents the relative composition of sand, silt, and clay in soil. The particle-size 

distribution is usually represented in a texture diagram, relating the percentages of sand, silt, 

and clay to a texture class (Minasny and McBratney, 2001). The standard reference method 

adopted by the GlobalSoilMap project for reporting particle size classes of sand, silt and clay 

(g/Kg), is as per the USDA Soil Survey Laboratory Methods Manual (3A1a) (Burt, 2004 page 34). 

The Kilmer and Alexander (1949) pipet method was chosen by the USDA Soil Conservation 

Service because it is reproducible in a wide range of soils. 

The current standard for particle size classes adopted by FAO for use in the Harmonized World 

Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2009) is ISO 10390:2005. This standard differs from 

the USDA definition in defining the size range for silt as 2-63 µm instead of 2-50 µm and sand as 

63-2000 µm instead of 50-2000 µm. This is a relatively new standard for FAO which previously 

adopted the USDA definitions for the digital soil map of the world (FAO, 1990).  

Differences in values reported for soil particle size fractions can arise because of differences in 

method of analysis (e.g. hydrometer, pipette, laser diffraction) or differences classification of 

particle size fractions. Most literature on harmonization of soil texture data deals with 

harmonizing differences in reported particle size fractions (Figure 2). 

 

 
 
Figure 2. Particle size limits used in European countries, Australia and America (Adapted from Nemes et 

al., 1999a and Minasny and McBratney, 2001) 
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Minasny and McBratney (2001) identified two major textural classifications in the world as the 

International and USDA/FAO systems (Table 11). The significant difference between these two 

was the choice of a threshold value for differentiating silt from clay of 20 µm for the 

International and 50 µm for the USDA. The new ISO/FAO standard adds an additional difference 

by changing the threshold value between silt and sand from 50 µm to 63 µm. This is a relatively 

minor difference but it still needs to be addressed. 

Table 11. Differences between the International, USDA and ISO/FAO particle size classifications 

Size Fraction International USDA ISO/FAO 

clay < 2 µm < 2 µm < 2 µm 

silt 2 - 20 µm 2 - 50 µm 2 - 63 µm 

sand 20-2000 µm 50-2000 µm 63-2000 µm 

Both Minasny and McBratney (2001) and Nemes et al., (1999a) investigated options for 

harmonizing values for sand, silt and clay reported using different systems for classifying 

particle size fractions. 

Using a compilation of four large databases consisting of a total of 1620 samples, Minasny and 

McBratney (2001) developed a single multiple linear regression model for converting between 

silt fraction based on the international standard of 2-20 µm (P2-20) to the 2-50 µm range of the 

USDA standard (P2-50) and vice versa. The equations are as follows: 

P2-50 = -18.3914 + 2.0971 (P2-20) + 0.6726 (P20-2000) - 0.0142 (P2-20)
2
 - 0.0049 (P20-2000)

 2
  

(R
2
 = 0.823) 

If P2-50 < 0 then P2-50 = 0.8289 (P2-20) + 0.0198 (P20-2000)  

and 

P2-20 = - 0.4070 - 0.1271 (P<2) + 0.5527 (P2-50) + 0.0017 (P<2)
2
 - 0.0019 (P2-50)

 2
 + 0.0059 (P<2) (P2-50) 

(R
2
 = 0.818) 

If P2-20 < 0 then P2-20 = 0.1147 (P<2) + 0.2212 (P2-50)  

Minasny and McBratney (2001) argued that most countries should consider adopting the 

particle size limits and texture classes of the USDA system. They noted that the 2 - 50 µm 

particle size range is usually more useful than the 2 - 20 µm range for estimating water 

retention in pedo transfer functions and observed that translations from one system into 

another were relatively easy, given improved computing power and algorithms.  

There is already a package in R that supports conversion of particle size data reported in one 

system of classification to values in any specified other system. This package, provided by Julien 

Moeys with contributions by Wei Shangguan, applies a log-linear transformation of soil texture 

data from one particle size system into another (Moeys, 2010). Two modules exist, one that 

only accepts three data values as input (TT.text.transf) and the other that can translate any 

number of values for any number of size fractions (TT.text.transf.X). Log linear transformations 

have been shown to be the least reliable method for converting between different particle size 

classifications (Minasny and McBratney, 2001; Nemes, 1999a) but the simple fact that routines 
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already exist in R to support rapid and efficient conversion from different systems into the 

USDA reference standard is encouraging. The GlobalSoilMap project will look at extending the 

functionality of this R package provided by Moeys (2010) to include additional options for 

converting between particle size classification systems.  

The GlobalSoilMap project will develop an extended library of R functions for converting from 

systems of particle size classification different from the USDA to the standard particle size 

classes of the USDA system (clay = < 2 µm, silt = 2-50 µm and sand = 50-2000 µm). We will 

investigate and implement three main options of a) the spline and similarity methods of Nemes 

et al., (1999a,b) b) the regression equations of Minasny and McBratney (2001), and c) the 

graphical PSD conversion nomograms of Shirazi et al., 2001.  
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C1.4. Bulk Density  

The standard reference method for reporting bulk density for the GlobalSoilMap project is the 

core method (ISO 11272).  

The dry bulk density (BD) is the ratio between the mass of oven dry soil material and the 

volume of the undisturbed fresh sample. The ISO standard defines dry bulk density as the ratio 

of the oven-dry mass of the solids to the volume (the bulk volume includes the volume of the 

solids and of the pore space) of the soil.  

The recommended ISO method (core method) uses steel cylinders of known volume (100 mL, 

400 mL) that are driven in the soil vertically or horizontally by percussion. Sampling large 

volumes results in smaller relative errors but requires heavy equipment. The method cannot be 

used if stones or large roots are present or when the soil is too dry or too hard. 

For soils with a high stone or root content or when the soil is too dry or too hard, methods 

based on the excavation technique are used as an alternative to the core method. In the 

excavation method a hole on a horizontal surface is dug and then filled with a material with a 

known density (e.g. sand which packs to a calibrated volume or water separated from the soil 

material by an elastic membrane). The soil obtained from the hole, is dried to remove the water 

and the dry mass is weighed.  

The volumetric percentage of the coarse fragments needs to be determined in order to 

calculate the bulk density of the fine earth. 

Experience has shown that organic carbon (OC) and texture predominately determine soil bulk 

density. Organic carbon and texture information is often available in soil survey campaigns. 

Therefore many attempts have been made to estimate soil bulk densities through some pedo-

transfer functions (PTFs) based on soil OC and texture data (Curtis and Post 1964; Adams 1973; 

Alexander 1980; Federer 1983; Rawls 1983; Huntington et al. 1989; Manrique and Jones 1991; 

Bernoux et al. 1998; Tomasella and Hodnett 1998).  

Heuscher et al., (2007) applied a stepwise multiple regression procedure to predict oven-dried 

bulk density from soil properties using the NRCS National Soil Survey Characterization Data. The 

database included both subsoil and topsoil samples. An overall regression equation for 

predicting oven-dried bulk density from soil properties (R
2
 = 0.45, P < 0.001) was developed 

using almost 47,000 soil samples. Partitioning the database by soil suborders improved 

regression relationships (R
2
 =0.62, P < 0.001). Of the soil properties considered, the stepwise 

multiple regression indicated that organic C content was the strongest contributor to bulk 

density prediction. Other significant variables included clay content, water content and to a 

lesser extent, silt content, and depth. 

Tranter et al., 2007 proposed a conceptual model that incorporated a priori knowledge for 

predicting soil bulk density from other more regularly measured properties. The model 

considers soil bulk density to be a function of soil mineral packing structures (ρm) and soil 

structure (∆ρ). Bulk-density maxima were found for soils with approximately 80% sand. Bulk 

densities were also observed to increase with depth, suggesting the influence of over-burden 

pressure. Residuals from the ρm model, referred to as ∆ρ, correlated with organic carbon. 
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Torri et al., (2007) developed a nomogram for transforming rock fragment content from a by-

mass to a by-volume basis and vice versa. This nomogram facilitates comparison of data on rock 

fragment content expressed in different units. 

Most PTFs for predicting bulk density, except those developed by Rawls (1983), Tomasella and 

Hodnett (1998), and Bernoux et al. (1998), are a function only of organic matter (OM)/OC 

content. Although studies conducted by Saini (1966) and Jeffrey (1970) have shown that OM 

has a dominating effect on soil bulk density and that it can be used alone as a good predictor of 

soil bulk density, it has been observed (e.g. Alexander 1980; Huntington et al. 1989; Manrique 

and Jones 1991) that soil texture plays a major role in controlling bulk density where OM is a 

minor component.  

McBratney et al., (2002) proposed the concept of a soil inference system (SINFERS) that 

incorporated both expert soil knowledge and statistical prediction equations. The proposed 

system was intended to implement two major functions, namely: 

1. Predict all soil properties using all possible (known) combinations of inputs and 

pedotransfer functions (PTFs). 

2. Select the combination that leads to a prediction with the minimum variance. 

The SINFER approach proposed by McBratney et al., (2002) will be the basis for efforts to create 

and apply PTFs for predicting soil bulk density for the GlobalSoilMap project.   
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C1.5. Available Water Capacity  

The standard reference method adopted by the GlobalSoilMap project for reporting available 

water capacity is as per the USDA Soil Survey Laboratory Methods Manual (3D5a) (Burt, 2004 

page 137).  

Calculation of the water retention difference (WRD) is considered the initial step in the 

approximation of the available water capacity (AWC). WRD is a calculated value that denotes 

the volume fraction for water in the whole soil that is retained between 1500-kPa suction and 

an upper limit of usually 33 or 10-kPa suction (Burt, 2004 page 137). The upper limit (lower 

suction) is selected so that the volume of water retained approximates the volume of water 

held at field capacity. The 10-, 33- and 1500-kPa gravimetric water contents are then converted 

to a whole soil volume basis by multiplying by the bulk density (Db33) and adjusting downward 

for the volume fraction of rock fragments, if present in the soil. The lower suctions, e.g., 10 or 

5-kPa, are used for coarse materials. 

Results of research to develop hydraulic PTFs have been reported widely, including in the USA 

(Rawls et al., 1982), the UK (Mayr and Jarvis, 1999), the Netherlands (Wösten et al., 1995), and 

Germany (Scheinost et al., 1997b).” This research has attempted to correlate particle size 

distribution, bulk density and organic matter content with water content at field capacity (FC, θ 

at -33 kPa), permanent wilting point (PWP, θ at -1500 kPa), and available water content (AWC = 

FC - PWP) (Minasny, 2007). Other examples include studies by Nielsen and Shaw (1958), 

Burrows and Kirkham (1958), Slater and Williams (1965a, 1965b, 1966, 1967, 1969), Hall et al., 

(1977)Gupta and Larson (1979) Clapp and Hornberger (1978) and Bloemen (1980).  

Gijsman et al., (2007) reported that many PTFs for estimating soil hydraulic properties have 

been published (see overviews by Rawls et al. (1991), Timlin et al. (1996) and Wösten et al. 

(2001). Timlin et al. (1996) reported 49 methods and estimated that this covers only about 30% 

of the total. Gijsman et al. (2002) compared eight methods for all the soil classes that make up 

the texture triangle. They went through the triangle in steps of 1% sand, 1% silt and 1% clay and 

determined the estimated values of wilting point or lower limit of plant extractable water (LL), 

field capacity, also referred to as the drained upper limit (DUL) and soil saturation (SAT) . 

Gijsman et al. (2002) concluded that none of the methods were universally good. The best 

method in the comparison of Gijsman et al. (2002) was Saxton et al. (1986), closely followed by 

Rawls et al. (1982).  

Jagtap et al. (2004) developed an approach that does not fit a mathematical equation through 

the data, but rather compares the soil layer for which the key soil water contents of LL, DUL and 

SAT have to be estimated with all layers in a database of field-measured soil–water-retention 

data. The layer that is most similar in texture and organic carbon concentration is considered to 

be the ‘nearest neighbor’ among all the layers in the database and its soil–water-retention 

values are assumed to be similar to those that need to be estimated. To avoid making 

estimated soil–water-retention values dependent on only one soil in the database, the six 

‘nearest neighbors’ are used and weighted according to their degree of similarity (Jagtap et al., 

2004). This is a non-parametric procedure, in the sense that it does not assume a fixed 

mathematical relationship between the physical properties and the water holding properties of 
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soils. The similarity method to convert soil particle size fraction data proposed by Nemes et al. 

(1999a,b) is a direct analogue of this similarity method of Jagtap et al., (2004).  

Zacharias and Wessolek (2007) identified three different approaches for deriving the WRC from 

more easily available parameters as: 

1. Point-based estimation methods: estimating the water content of selected matric 

potentials from predictors such as the percentage of sand, silt, or clay, the amount of 

organic matter, or the bulk density (e.g., Gupta and Larson, 1979; Rawls and Brakensiek, 

1982).   

2. Semiphysical approach: deriving the WRC from information on the cumulative particle 

size distribution (Arya and Paris, 1981); theoretically, this approach is based on the 

similarity between cumulative particle size distribution and water retention curves. The 

water contents are derived from the soil’s predicted pore volume and the hydraulic 

potentials are derived from capillarity relationships.  

3. Parameter estimation methods: using multiple regression to derive the parameters of 

an analytical closed-form equation for describing the WRC, using predictors such as the 

percentage of sand, silt, and clay, the amount of organic matter, or the bulk density 

(e.g., Vereecken et al., 1989; Wösten et al., 1999).  

Zacharias and Wessolek (2007) concluded that approach 1 has the disadvantage that it uses a 

large number of regression parameters depending on the number of WRC sampling points, 

which makes its use in the mathematical modelling more difficult while for approach 2 very 

detailed information about the particle size distribution is required. They therefore preferred 

use of the parameter estimation methods. 

Zacharias and Wessolek (2007) observed that pedotransfer functions that do not use the OM 

are rare and gave the following examples. Hall et al. (1977) developed point-based regression 

equations using soil texture and bulk density (only for subsoils) for British soils. Oosterveld and 

Chang (1980) developed an exponential regression equation for Canadian soils for fitting the 

relationship between clay and sand content, depth of soil, and moisture content. Equations to 

estimate the WRC from mean particle diameter and bulk density have been proposed by 

Campbell and Shiozawa (1989). Williams et al. (1992) analyzed Australian data sets and 

developed regression equations for the relationship between soil moisture and soil texture, 

structure information, and bulk density including variants for both the case where there is 

available information on OM and where the OM is unknown. Rawls and Brakensiek (1989) 

reported regression equations to estimate soil water retention as a function of soil texture and 

bulk density. Canarache (1993) developed point based regression equations using clay content 

and bulk density for Romanian soils. More recently, Nemes et al. (2003) developed different 

PTFs derived from different scales of soil data (Hungary, Europe, and international data) using 

artificial neural network modeling including a PTF that uses soil texture and bulk density only. 

Zacharias and Wessolek (2007) developed two different regression equations depending upon 

the percentage of sand in a soil as follows: 

Sand content < 66.5% 
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Ѳr = 0 

Ѳs = 0.788 + 0.001clay – 0.263Db 

Ln(α) = -0.648 + 0.023sand + 0.044clay – 3.168Db 

n = 1.392- 0.418sand
-0.024

 + 1.212clay
-0.704

 

Sand content > 66.5% 

Ѳr = 0 

Ѳs = 0.890 - 0.001clay – 0.332Db 

Ln(α) = -4.197 + 0.013sand + 0.076clay – 0.276Db 

n = 2.562+ 7x10
-9

sand + 3.750 clay
-0.016

 

The regression coefficients from these models were almost identical to those reported by 

Vereecken et al., (1989) (Vereecken Ѳs = 0.81 + 0.001clay – 0.283Db) for a different data set, 

adding further credibility to their general applicability. Zacharias and Wessolek (2007) 

recommended using the PTFs of Vereecken et al., (1989) if data on OM were available but felt 

that their proposed equations were suitable for use where OM data were not available.  

Empirical equations developed by Williams et al. (1992) for the prediction of the constants A 

and B in the Campbell function have been widely used in Australia and elsewhere. These 

regression equations require particle size distribution, field texture and bulk density inputs as 

follows: 

A = 1.996 + 0.136(ln C) - 0.00007(FS215 ) + 0.145(ln SI) + 0.382(ln TEX) 

B = -0.192 + 0.0946(ln TEX) - 0.00151(FS) 

C is % clay (< 0.002 mm); SI is % silt (0.002-0.02 mm); FS is % fine sand (0.02-0.20 mm), and TEX 

is texture group from 1-6 as defined by Northcote (1971). 

Cresswell et al., (2006) demonstrated applicability of the Williams et al. (1992) method for 

French soils and confirmed that the approach of assuming a Campbell SWC model and 

empirically predicting the slope and air entry potential has merit. They concluded that the 

empirical regression equations of Campbell appeared transferable to different data sets from 

very different geographical locations. . They provided regression equations for all samples and 

stratified by horizon type that had r
2
 values ranging from 0.81 to 0.91.  

Cresswell et al., (2006) suggested a strategy for achieving adequate coverage of soil hydraulic 

property data for France that included an efficient sampling strategy based on the use of 

functional horizons (Bouma 1989) and a series of reference sites where soil hydraulic properties 

could be measured comprehensively. They argued that functional horizon method recognizes 

the soil horizon rather than the profile as the individual or building block for prediction (Wösten 

et al. 1985; Wösten and Bouma 1992). A significant feature of this approach is the capacity to 

create a complex range of different hydrologic soil classes from simple combinations of horizon 

type, sequence, and thickness. 
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It is anticipated that the SINFER approach proposed by McBratney et al., (2002) will be the basis 

for efforts to create and apply PTFs for predicting available water capacity for the 

GlobalSoilMap project. These PTFs have yet to be developed. 
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Appendix D: Equal Area projections for use by each of 

the GlobalSoilMap nodes 

This Appendix proposes to suggest a preferred equal area projection for each node to use for 

collating and processing projected data sets used to predict soil properties (Table D1).  

Table 12. Suggested continental scale projections and their parameters for each node 

 

It is expected that each node will define a single node-wide projection in which to work. It is 

further expected that this projection will be some type of equal area projection in which all grid 

cells have the same fixed resolution. Equal area projections which organize data into grid cells 

of fixed horizontal dimensions are required by some of the key programs used to compute 

terrain attributes from DEM data or to implement geostatistical procedures such as kriging.   

Nodes that work at a grid resolution finer than 100 m will be able to use the finer resolution 

data to compute bulked mean values for a 3 arc-second by 3 arc-second grid cell by averaging 

the values for all grid cells that occupy a target 3 arc-second by 3 arc-second reporting grid cell.  

Nodes that elect to work at a grid resolution of 100 m or greater will need to use the property 

values of surrounding grid cells to compute a weighted average value for each property at each 

depth for each target 3 arc-second by 3 arc-second reporting grid cell. 

 

 

Abbr Description Australia Africa Asia Europe N. America S. America
Proj Projection Albers EA Lambert EA Mercator Lambert EA Albers EA Albers EA
lat_1 Latitude of 1st standard parallel -18 0 29.5 -5
lat_2 Latitude of 2nd standard parallel -36 45.5 -42
lat_0 Latitude of Origin 0 5 52 23 -32
lat_ts Latitude of true scale 0
lon_0 Central Meridian 132 20 0 10 -96 -60
x_0 False Easting - X 0 0 0 4321000 0 0
y_0 False Northing - Y 0 0 0 3210000 0 0
ellps Ellipsoide GRS80 WGS84 GRS80 GRS80 aust_SA
datum Datum toWGS84 WGS84 NAD83
units Units of Distance metres metres metres metres metres metres
a Semimajor radius of the ellipsoid axis 6378137

b Semiminor radius of the ellipsoid axis 6378137

k Scalng factor 1
nadgrids Grid based datum adjustment "@null"

wktext
no_defs Don't use the defaults file
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Suggested projections expressed in terms of R-code  

• 1st level - Whole world compilation projections  

o world proj4: +proj=lonlat +ellps=WGS84  

o Googlemaps proj4: +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 

+x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs  

• 2nd level – Continental scale compilation projections at the node level 

o au (Australia and New Zealand) proj4: +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 

+lon_0=132 +x_0=0 +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m 

+no_defs  

o af (Africa) proj4: +proj=laea +lat_0=5 +lon_0=20 +x_0=0 +y_0=0 +units=m 

+ellps=WGS84 +datum=WGS84  

o as (Asia) proj4: +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 

+x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs  

o eu (Europe) proj4: +proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 

+y_0=3210000 +ellps=GRS80 +units=m +no_defs  

o na (North America) proj4: +proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-

96 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs  

o sa (South/Central America) proj4: +proj=aea +lat_1=-5 +lat_2=-42 +lat_0=-32 

+lon_0=-60 +x_0=0 +y_0=0 +ellps=aust_SA +units=m +no_defs  
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Appendix E: Background on uncertainty and guidelines 

for uncertainty methods  

Tier 1 and Tier 2 products for any contiguous region, should include some minimal statement of 

accuracy, although more formal validation is not required.  

At Tier 3 and 4, an appropriate validation measure for each property at each depth increment is 

the root mean square error of the point predictions. This can be achieved for instance by cross 

validation for point-based methods, and true validation for soil- class map based methods. In 

the latter case at least, on average, one observation point per 10 000 square kilometres may be 

required and probably at least 50 points are required to obtain an estimate. 

In higher Tiers it is anticipated a richer set of validation criteria will be used, including mean 

error, and the percentage of the map area that fall within the uncertainty limits. Ultimately, 

sampling will be required to produce such quality estimates. 

A general framework for assessing and representing uncertainties in environmental data is 

provided by Brown (2004).  

Heuvelink and Brown (2007) observed that “soil data are rarely certain or ‘error free’, and that 

these errors may be difficult to quantify in practice”. Indeed, the quantification of error 

(defined here as a ‘departure from reality’) implies that the ‘true’ state of the environment is 

known. They reported that “in recent years, a distinct spectrum of methods, not altogether 

statistical, has emerged for dealing with situations of ‘imperfect knowledge’ in scientific 

research (see Ayyub, 2001 also)”. A spectrum of methods for uncertainty analysis is indeed 

important for DSM (and GlobalSoilMap) with due consideration of the potential sources of 

uncertainty—namely from inputs (observed data and covariate information), model parameters 

and model structure. Similarly, methods of uncertainty analysis will vary on the basis of 

whether soil point data or existing soil maps are used for producing GlobalSoilMap outputs. 

Moreover, methods will also vary dependent on the density of point data as well. 

As such, guidance on uncertainty analysis for GlobalSoilMap product will take the following 

form: 

When there are sufficiently many point observations, there are two general approaches: 

1. Statistical modeling (principally geostatistical models) of the soil properties directly. The 

uncertainty of predictions is generated from the model as a byproduct.  

2. Statistical modeling (principally geostatistical models) of residuals from independent 

data set or resampling techniques  

If there are insufficient point observations then the use of expert knowledge may be a viable 

option. Examples of this include: 

1. Uncertainty parameters e.g. the lower and upper limits for 90% prediction intervals for 

soil attributes. In practice this could mean the upper and lower limits for each property 

at each location and depth.  
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2. Expert elicitation for (parametric form of) distributions of soil attributes in specific soil 

classes  

3. For soil maps where soil class proportions and attribute ranges are quantified, these 

values can be combined in a conservative manner (via lowest of the low etc.) or via 

numerical methods.  

4. Expert elicitation for variogram specification  

As stated in the body of the specification document, for tier 1, our uncertainty of the reality is 

to be expressed as the 90% Prediction Interval (PI) which reports the range of values within 

which the true value is expected to occur 9 times out of 10 (or 90% of the time).  

For all uncertainty methods, it is the probabilistic ones that may be most practicable for 

GlobalSoilMap. In regards to probability density functions (pdfs), Heuvelink and Brown (2007) 

argued that they confer a number of advantages over non-probabilistic techniques. For 

example, pdfs include methods for describing interdependence or correlation between 

uncertainties, methods for propagating uncertainties through environmental models and 

methods for tracing the sources of uncertainty in environmental data and models (Heuvelink, 

1998). Notwithstanding these advantages, and the current popularity of stochastic methods in 

environmental research, there are a number of ongoing challenges for the successful 

application of pdfs to environmental data. In particular, there is a need to support the 

identification and estimation of pdfs in specific cases, as well as their storage in environmental 

databases. 

Thus, the general pdfs need to be simplified in order to make them estimable in practice and 

tractable to storage within a soil database. The pdf of a numerical or categorical constant may 

be simplified by describing the uncertainty with a characteristic shape function, for which a 

small number of parameters must be estimated. Rather than specifying the entire pdf it is 

therefore sufficient to define the shape function and to estimate its parameters. For example, 

measurement error in a continuous numerical attribute is often assumed to follow a normal 

distribution (Heuvelink, 1998). This implies that the pdf is reduced to only two parameters, 

namely the mean and standard deviation, which describe the bias and average magnitude of 

uncertainty in the soil attribute, respectively. Similarly, it may be reasonable to assume that the 

number of stones in a volume of soil is Poisson distributed, for which the discrete pdf is 

reduced to only one parameter. 

Useful simplifications must satisfy two conditions. First, the simplified pdfs must be estimable in 

practice, as well as tractable to storage within a soil database. Secondly, they must approximate 

the uncertainty in a soil variable sufficiently for their intended application. Among others, the 

elaboration and subsequent storage in the database must include the following aspects: 

1. Uncertainty is subjective. The database must allow the opinions of different ‘experts’ to 

be stored. 

2. Uncertainty information is very sensitive to the support size of the data items (Heuvelink 

and Pebesma, 1999). Here ‘support’ refers to the volume, magnitude and length of the 
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entity described. Support size (in time and space) should always be specified in a 

database. 

3. The uncertainty in a particular variable may well be statistically dependent on the 

uncertainty in another variable. Statistical dependencies (and cross correlations) 

between uncertain variables can have a marked influence on how uncertainties 

propagate in a modelling study. These create a need to address uncertainty in spatially 

distributed or dynamic attributes because these are strongly affected by about 

dependencies and correlations.  

In terms of implementation, where there is sufficient point data to define the underlying 

probability distribution function (pdf) for conventional statistical analysis, a 90% confidence 

interval will be calculated to establish the range of the prediction interval (PI) for each 

predicted soil property. When using statistical modeling (principally geostatistical models) of 

the soil properties directly. The uncertainty of predictions is generated from the model as a 

byproduct from which the necessary PIs can be derived. Sufficient data or computing power is 

often not available to achieve this. 

An alternative method to estimate PI has been presented and described in Malone et al. 2011). 

Here uncertainty is treated as the probability distribution of the output model errors, which 

comprises all sources of uncertainty (model structure, model parameters and input data). And 

since it is estimated through an empirical distribution, it is not necessary to make any 

assumption about residuals (Solomatine and Shrestha 2009). This method is particularly useful 

when we are dealing with soil spatial prediction functions that include data-mining tools or 

neural networks (as examples) in combination with the regression-kriging approach, where it 

would be difficult to use other existing methods (of uncertainty analysis) to estimates of 

uncertainty. The approach can be summarized in the following steps: 

1. Apply an unsupervised classification technique (e.g. fuzzy k-means) to the covariate data 

layers assembled and used to make the predictions of soil properties for a particular 

area or soil-landscape zone to produce functional classes (4-5). 

2. Overlay all available geo-registered soil profile analytical data on the resulting 4-5 

functional class map for a particular region or soil-landscape zone of interest. 

3. Compute the probability distribution function (pdf) for each soil property of interest, at 

each depth of interest, within the 4-5 functional classes. This establishes the range and 

distribution of observed soil property values within each of the 4-5 functional classes. 

4. Use the pdf computed for each soil property at each depth for each class to identify the 

values at the 5% and 95% confidence limits (the 90% prediction interval or PI). 

5. Use the values at the 5% and 95% confidence limits of the pdf for each class as inputs in 

calculating a weighted fuzzy mean value for the upper and lower confidence intervals 

for each grid cell.  

6. The method for computing upper and lower confidence limits for any grid cell is based 

on computing a weighted average of the confidence limit value for each of the 4-5 

classes times the fuzzy likelihood value of that class for all n classes at each location.    
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7. The estimate of uncertainty at each grid cell is a weighted average of the similarity of 

the conditions at each cell to the conditions that define each of the N classes. 

The approach of Malone et al., (2011) requires that there be a sufficient number and density of 

point observations within any given prediction area (30 per class) to support a data driven 

assessment of the pdf of a given soil property by class within the geographic extent of an area 

of interest.   

If sufficient information does not exist to support conventional statistical analysis, the range will 

have to be assessed by appropriate local or national experts. Fuzzy logic (Cazemier et al., 2001) 

and Bayesian beliefs (O’Hagan et al., 2006) have been proposed as suitable frameworks for 

establishing estimates of uncertainty in the absence of sufficient hard field data. 

See also Appendix H 

As an example, Lilburne et al., (2009) presented a method based on using expert knowledge to 

estimate the pdf in situations where there is insufficient information to support conventional 

statistical analysis. This following method is adapted and presented as one example of how 

expert knowledge can be used to estimate uncertainty for data derived from a polygon soil 

map, as follows:  

1. Best available expert knowledge and observed or measured data are examined for each 

soil map unit, or for taxonomic classes included within the map unit.  

2. The variability of the property is described in the form of a probability distribution 

function (pdf). 

3. If data are available, a normal, lognormal, or beta function can be used. An additional 

combination pdf termed a duplex function has also been proposed. This combines a 

triangular or uniform distribution with a single-valued discrete pdf for the minimum or 

maximum value.  

4. Confidence in the base property data is indicated by an expert assigned confidence 

code. 

For the present, uncertainty will be reported as the best feasible estimate of the range of 

values within which a prediction of a soil property at any depth and any location is expected 

with 90% confidence.  
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Appendix F: North American Node tiering concepts  

The North America Node of GlobalSoilMap has developed a tiering concept where each 

successive tier of map products incorporates improvements over the previous tier. In the 

United States, initial tiers will rely heavily on the use of existing area-class maps as held in 

STATSGO2 and SSURGO, with the understanding that later tiers will make better use of spatial 

disaggregation and point observations and eventually lead to truly continuous raster property 

maps. For the United States, the proposed tiering system is as follows: 

“Tiers 0.1–0.4”. Essentially rasterised versions of the existing STATSGO2 map. Soil 

components have been fitted with equal-area splines (Bishop et al., 1999; Malone et al., 

2009), which allows property estimates to be made at the GlobalSoilMap standard depth 

increments . Weighted means are then calculated within map units where more than one 

soil component possesses data, otherwise the single soil component’s property estimate is 

reported. The products may have gaps where soil exists but property values were not 

recorded. Map units will not have been harmonized so artifacts (data discontinuities) may 

exist at political boundaries. The products are not truly continuous. Pre-existing scale 

discrepancies are inherited from STATSGO2. For initial tiers, the “upper” and “lower” 

values reported in STATSGO2 are assumed to be the 95% confidence limits for uncertainty 

estimation. Later tiers may estimate probability distribution functions and hence 

confidence intervals from legacy point observations in the National Soil Characterization 

Database.  

“Tiers 0.5–0.9”. Essentially as per tiers 0.1–0.4 but the higher-detail SSURGO map will be 

used. Tiers will begin to incorporate harmonization of map units at political boundaries, 

which may necessitate the use of spatial disaggregation and other predictive techniques. 

Techniques will need to be developed to fill gaps in SSURGO map where no SSURGO data 

currently exists. Disaggregation of STATSGO2 may be a potential solution, as may other 

predictive approaches such as the homosoil concept (Mallavan et al., 2010). Uncertainty as 

per tiers 0.1–0.4, or other quantitative techniques. 

“Tiers 1.0+”. These tiers will be produced using predictive techniques. Products will not contain 

gaps other than where bedrock or water exists. Products will not contain scale discrepancies. 

Uncertainty will be represented as 95% confidence interval estimated by quantitative 

techniques will be refined as more point observations become available. Tiers <1 will be 

released for comment and feedback, but it is anticipated that collated international products 

from nodes will meet v1 standards. 

  



 

 49

Appendix G: National variants of GlobalSoilMap 

Products  

Besides the concept of tiering there will be a need for various individual countries to produce 

products that otherwise meet GlobalSoilMap tiering standards in terms of resolution, depth 

range, uncertainty etc., but do not correspond to the standard set of properties. These are 

designated a national superset,  

GLOBALSOILMAPnss ‘name of country’ ‘tier no’ ‘soil property’  

e.g., GLOBALSOILMAPnss USA V1 pH in KCl(1:2),  

and are intended for national use only, Common examples may be soil properties based on 

local analytical methods, particularly pH and carbon, cation exchange capacity. It is envisaged 

that in some or many instances these may be produced first and pedotransfer functions 

(Appendix C) used to convert these to the GlobalSoilMap standard. 
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Appendix H: An approach for uncertainty estimation 

of soil spatial predictions based on soil class (maps) 

with limited within-class variability information 

Introduction 

Often we do not have a sufficient quantity of soil property data per soil class in order to generate soil 

property distributions and estimate their parameters (e.g., mean and variance), which may then be used 

to derive confidence intervals. Techniques exist for estimating parameters of distributions based on 

small samples but they may be computationally expensive or specific for a particular distribution 

(normal, lognormal, etc.). 

Although sample data may be limiting, often we have some idea of the range and typical value of soil 

properties for soil classes. In the presence of such data, a useful distribution to use is the triangular 

distribution. It may be positively or negatively skewed or symmetrical, but it must be unimodal 

(Johnson, 1997). It has been used in risk analysis, where it is often a proxy for the more computationally 

complex beta distribution often used when sample data is limiting (Williams, 1992). The probability 

density function of the triangular distribution is given in3. 

 
Figure 3. Probability density function of the triangular distribution. 

We can use the triangular distribution in a sampling simulation approach to estimate uncertainty, as will 

be explained in the following section. 

General approach 

For some spatial entity (e.g., a map unit delineation or a grid cell), assume s soil classes Si, i = 1…s exist or 

have the potential to exist. Draw n times from the triangular soil property distribution of each soil class. 

A random draw from the triangular distribution is determined as follows: 

�� � � ����	 
 ���� 
 �� for	0 � � � ����
� � 	 
 ��1 
 ���	 
 ���	 
 �� for	���� � � � 1     (H1) 



 

 51

where g is the soil property value drawn from the distribution, U is a random variate drawn from the 

uniform distribution in the interval (0,1),  ���� � �� 
 �� �	 
 ��⁄  and a, b and c are the parameters of 

the triangular distribution.. 

For each draw N = 1…n, calculate the weighted mean property value, ��∗ , as: 

��∗ � ∑ ���������           (H2) 

where giN is the soil property value drawn from the triangular distribution and wi is the weight 

associated with Si. Weights are explained below. 

After all draws have taken place, we will have a set of n weighted mean soil property values from which 

a distribution can be generated. The lower and upper bounds of the 90% confidence interval are then 

the 5
th

 percentile and 95
th

 percentile of the distribution of weighted means, respectively. 

Special cases 

Two special cases of this approach exist. The first case involves situations where the most feasible 

approach is to generate within-map unit spatially weighted mean soil property maps. In this case the 

spatial entity upon which calculations are carried out is the soil map unit polygon. For each polygon, s 

soil classes are assumed to exist in known (or assumed) proportions, but the precise spatial distribution 

of each soil class is unknown. The soil property map thus reports a single weighted mean soil property 

value for each map unit, for each depth increment. In this case, the weight wi in equation 2 is the areal 

proportion of soil class Si in the map unit (Odgers et al., 2012). 

The second case involves situations where the soil polygon map has been spatially disaggregated. The 

result of the spatial disaggregation is a set of s raster maps where the map for Si indicates the probability 

of occurrence of Si at each grid cell. This probability varies continuously in space. The spatial entity upon 

which calculations are carried out is the grid cell. In this case the weight wi in equation 2 is the 

probability of occurrence of Si at the given grid cell. 

Obviously these methods can be applied for any probability density function. 
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Appendix I Suggested data density for point-based 

methods 
Experience suugests that a density of between 1 and 10 observations per 1000 km

2
 is required for point 

predictions. The larger densities are required for regions with larger instrinsic pedodiversity and where 

the legacy sampling is clustered (in space or with repect to the covariates). 

 

 

 

 

 

 


